	is a polynomial function such that $f'(-2) = f'(3) = 0$ and $f''(x) = (7x + 6)$ critical number of f , determine what the Second Derivative Test tells you about	7 (5 (5)	SCORE: / 3 PTS
, f"	(3) = 0 -> NO CONCLUSION (E)	ZEASON +	BOTH THE THE CONCLUSION TO GET ANY
f(x) [a] [b]	is a continuous function with derivative $f'(x) = (3+2x)^2 x^{-\frac{1}{3}}$. Find the critical numbers of f . Justify your answer very briefly. $f'(x) \text{ DME } \bigcirc x = \bigcirc \in \text{DOMA/N}$ $f'(x) = \bigcirc \bigcirc x = -\frac{3}{2} \in \text{DOMA/N}$ For each critical number of f , determine what the First Derivative Test tells you Justify your answer very briefly. Do NOT use the Second Derivative Test.	u about that critical num	
	s a continuous function whose derivative $f'(x)$ is shown on the right. owing questions are about the function f , NOT THE FUNCTION f . Write "I UNDERSTAND" if you understand that the following questions	<u>.</u>	SCORE:/4 PTS $f'(\underline{NOT} f)$
	are about the continuous function f , NOT THE FUNCTION f' .		
[b]	Find the critical numbers of f . Justify your answer very briefly.	x=-2 $x=-3$	1
[b]	Find the critical numbers of f .	$\begin{array}{c} x = -2 \\ x = -3 \end{array}$ $\begin{array}{c} x = -3 \\ ROM \\ ROM \\ ROM \\ \end{array}$	-1 -2 -3 -4
	Find the critical numbers of f . Justify your answer very briefly. Find the x -coordinates of all inflection points of f Let $f'(x)$ Due G $f'(x) = G$ Find the $f'($	$x = -2$ $x = -3$ ROM $ROM = -2$ $-2)(\frac{1}{2})$ $\frac{1}{2}$	3 -2 -1 1 2 3 4 1 -1 -2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4

USES OF L'HOSATAL RUE FOR FULL

 $f(0) = 0^{4}e^{0} = 0$ $f(x) = 0 \rightarrow x^{4} = 0$ or $e^{4x} = 0 \rightarrow x = 0$

 $\frac{1}{2} \lim_{x \to \infty} x^{4} e^{4x} = 0 \quad (\infty. \infty)$ $\lim_{x \to \infty} x^{4} e^{4x} = \lim_{x \to \infty} \frac{4x^{3}}{e^{4x}} = \lim_{x \to \infty} \frac{3x^{2}}{4e^{4x}} = \lim_{x \to \infty} \frac{3}{32e^{4x}} = 0$ $(\infty. 0) \quad (\infty) \quad$

 $f'(x) = 4x^{3}e^{4x} + 4x^{4}e^{4x} \text{ EXISTS AT ALL }$ $= 4x^{3}e^{4x}(1+x) = 0 \text{ @ } x = 0, -1 \text{ }$ $f''(x) = 12x^{2}e^{4x} + 16x^{3}e^{4x} + 16x^{3}e^{4x} + 16x^{4}e^{4x} \text{ EXISTS AT ALL } x$ $= 12x^{2}e^{4x} + 32x^{3}e^{4x} + 16x^{4}e^{4x}$ $= 4x^{2}e^{4x}(3+8x+4x^{2})$ $= 4x^{2}e^{4x}(3+8x+4x^{2})$ $= 4x^{2}e^{4x}(3+2x)(1+2x) = 0$ = 6x + 16x + 1

★ Domain	★ Discontinuities	Intercepts (specify $x - \text{ or } y - $)	One sided limits at each discontinuity (write using proper limit notation)	
(-0,00)	NONE	X-INT: 0 (1)	N/A	
Horizontal Asymptotes	Intervals of Increase	Intervals of Decrease	Intervals of Upward Concavity	Intervals of Downward Concavity
y=0,2	(0,00) (2)	(-1,0),E	(-1 00) (2)	$(-\frac{2}{2}, -\frac{1}{2})$
Vertical Tangent Lines	Horizontal Tangent Lines	Local Maxima	Local Minima	Inflection Points
NONE	@ x=-1,0(2)	@x=-1, @	@x=0, (1)	$2 \times = -\frac{3}{2}, -\frac{1}{2}$